- Laboratory of Nonlinear Dynamical Systems
- Main interests
- Modelling large-scale transport and mixing in the ocean
- Chaotic advection in the ocean
- Ray and wave chaos in underwater sound channels
- Marine Hydrocarbon Seeps
- Nonlinear dynamics of gas bubbles
- Dynamical symmetry in the cavitation phenomena
- Nonlinear dynamics of atoms and photons and quantum chaos
- Chaotic transport in Hamiltonian classical and quantum syste
- Dynamical symmetries of nonlinear dynamical processes
- Физика и жизнь на океанских фронтах
- Seminars
- The most important results of the laboratory
Ray and wave chaos in underwater sound channels
Sound propagation in the ocean over hundreds and thousands kilometers is possible due to the existence of a natural refractive waveguide called the underwater sound channel. There exists a factor, earlier not taken into consideration, which to a significant extent determines the structure of the wave field at long ranges, ray chaos. In the ray approximation, the underwater sound propagation can be modelled by a Hamiltonian system representing a nonlinear oscillator driven by a weak nonstationary external perturbation. A range-independent background sound speed profile plays the role of an unperturbed potential on which a range-dependent perturbation of the sound speed along the waveguide, that can be caused by internal waves, mesoscale eddies, ocean fronts or something else, is superimposed. We study main features of ray chaos in the ocean and their manifestations at finite wavelengths, so-called wave chaos, by the methods of theory of nonlinear dynamical systems, Hamiltonian classical and quantum chaos.
2004
1. D.V. Makarov, M.Yu. Uleysky, S.V. Prants. Ray chaos and ray clustering in an ocean waveguide. Chaos. V.14. N1 (2004) P.79-95. DOI:10.1063/1.1626392
2006
1. Makarov D.V., Uleysky M.Yu., Budyansky M.V., and Prants S.V. Clustering in randomly driven Hamiltonian systems. Physical Review E. V. 73. 066210 (2006). DOI: 10.1103/PhysRevE.73.066210
2007
1. Макаров Д.В., Улейский М.Ю. Высвечивание лучей из горизонтально-неоднородного подводного звукового канала. Акустический журнал. Т. 53. С. 565-573 (2007).
2. Kon'kov L.E., Makarov D.V., Sosedko E.V., Uleysky M.Yu. Recovery of ordered periodic orbits with increasing wavelength for sound propagation in a range-dependent waveguide. Physical Review E. V. 76. 056212 (2007).
2008
1. Макаров Д.В., Коньков Л.Е., Улейский М.Ю. Соответствие между лучевой и волновой картинами и подавление хаоса при дальнем распространении звука в океане. Акустический журнал. Т. 54. С. 439-450 (2008).
2010
1. D. Makarov, S. Prants, A. Virovlyansky, and G. Zaslavsky. Ray and wave chaos in ocean acoustics: chaos in waveguides. Singapore: World Scientific, 2010. 388 p.
2012
1. A. L. Virovlyansky, D. V. Makarov, S. V. Prants. Ray and wave chaos in underwater acoustic waveguides.
2015
1. S.V. Prants. Backward-in-time methods to simulate chaotic transport and mixing in the ocean. Physica Scripta V. 90 074054 (2015). doi:10.1088/0031-8949/90/7/074054 Science 1.2.
2. S.V. Prants, M.V. Budyansky, M.Yu. Uleysky, J. Zhang. Hyperbolicity in the ocean. Discontinuity, Nonlinearity, and Complexity. V.4, N3 pp. 257-270 (2015). DOI: 10.5890/DNC.2015.09.004 doi:10.1088/0031-8949/90/7/074054 Science 1.2.
2017
2018
Makarov D. Random matrix theory for low-frequency sound propagation in the ocean: a spectral statistics test. Journal of Theoretical and Computational Acoustics. 2018. V. 26. 1850002.
Last Updated (Tuesday, 04 December 2018 11:30)