Ray and wave chaos in underwater sound channels

Sound propagation in the ocean over hundreds and thousands kilometers is possible due to the existence of a natural refractive waveguide called the underwater sound channel. There exists a factor, earlier not taken into consideration, which to a significant extent determines the structure of the wave field at long ranges, ray chaos. In the ray approximation, the underwater sound propagation can be modelled by a Hamiltonian system representing a nonlinear oscillator driven by a weak nonstationary external perturbation. A range-independent background sound speed profile plays the role of an unperturbed potential on which a range-dependent perturbation of the sound speed along the waveguide, that can be caused by internal waves, mesoscale eddies, ocean fronts or something else, is superimposed.  We study main features of ray chaos in the ocean and their manifestations at finite wavelengths, so-called wave chaos, by the methods of theory of nonlinear dynamical systems, Hamiltonian classical and quantum chaos.

2004

1. D.V. Makarov, M.Yu. Uleysky, S.V. Prants. Ray chaos and ray clustering in an ocean waveguide. Chaos. V.14. N1 (2004) P.79-95. DOI:10.1063/1.1626392

2006

1. Makarov D.V., Uleysky M.Yu., Budyansky M.V., and Prants S.V. Clustering in randomly driven Hamiltonian systems. Physical Review E. V. 73. 066210 (2006). DOI: 10.1103/PhysRevE.73.066210

2007

1. Макаров Д.В., Улейский М.Ю. Высвечивание лучей из горизонтально-неоднородного подводного звукового канала. Акустический журнал. Т. 53. С. 565-573 (2007).

2. Kon'kov L.E., Makarov D.V., Sosedko E.V., Uleysky M.Yu. Recovery of ordered periodic orbits with increasing wavelength for sound propagation in a range-dependent waveguide. Physical Review E. V. 76. 056212 (2007).

2008

1. Макаров Д.В., Коньков Л.Е., Улейский М.Ю. Соответствие между лучевой и волновой картинами и подавление хаоса при дальнем распространении звука в океане. Акустический журнал. Т. 54. С. 439-450 (2008).

2010

1. D. Makarov, S. Prants, A. Virovlyansky, and G. Zaslavsky. Ray and wave chaos in ocean acoustics: chaos in waveguides. Singapore: World Scientific, 2010. 388 p.

2012

1. A. L. Virovlyansky, D. V. Makarov, S. V. Prants. Ray and wave chaos in underwater acoustic waveguides. 

Physics-Uspekhi V. 55 N 1. (2012) P. 18-46 (2012) 

2015

1.  S.V. Prants. Backward-in-time methods to simulate chaotic transport and mixing in the ocean. Physica Scripta V. 90 074054 (2015). doi:10.1088/0031-8949/90/7/074054 Science 1.2.

2.  S.V. Prants, M.V. Budyansky, M.Yu. Uleysky, J. Zhang. Hyperbolicity in the ocean. Discontinuity, Nonlinearity, and Complexity. V.4, N3 pp. 257-270 (2015). DOI: 10.5890/DNC.2015.09.004 doi:10.1088/0031-8949/90/7/074054 Science 1.2.

2017

 

1. Pavel S. Petrov, Sergey V. Prants and Tatyana N. Petrova. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean Physics Letters A. V.381 P.1921-1925 (2017). http://dx.doi.org/10.1016/j.physleta.2017.04.0110375-9601/2017
1. Pavel S. Petrov, Sergey V. Prants and Tatyana N. Petrova. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean Physics Letters A. V.381 P.1921-1925 (2017). http://dx.doi.org/10.1016/j.physleta.2017.04.0110375-9601/2017

 

2018

Makarov D. Random matrix theory for low-frequency sound propagation in the ocean: a spectral statistics test. Journal of Theoretical and Computational Acoustics. 2018. V. 26. 1850002.

Last Updated (Tuesday, 04 December 2018 11:30)